Part Number Hot Search : 
52PF40W VSH61032 003900 5ETTT M6650 BP104FS PT15D TDA4566
Product Description
Full Text Search
 

To Download ND2012L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ND2012L/2020L
N-Channel Depletion-Mode MOSFET Transistors
Product Summary
Part Number
ND2012L ND2020L
V(BR)DSV Min (V)
200
rDS(on) Max (W)
12 20
VGS(off) (V)
-1.5 to -4 -0.5 to -2.5
ID (A)
0.16 0.132
Features
D D D D D High Breakdown Voltage: 220 V Normally "On" Low rDS Switch: 9 W Low Input and Output Leakage Low-Power Drive Requirement Low Input Capacitance
Benefits
D D D D D Full-Voltage Operation Low Offset Voltage Low Error Voltage Easily Driven Without Buffer High-Speed Switching
Applications
D D D D D Normally "On" Switching Circuits Current Sources/Limiters Power Supply, Converter Circuits Solid-State Relays Telecom Switches
TO-226AA (TO-92) S 1
G
2
D
3 Top View
Absolute Maximum Ratings (TA = 25_C Unless Otherwise Noted)
Parameter
Drain-Source Voltage Gate-Source Voltage Continuous Drain Current (TJ = 150_C) Pulsed Drain Currenta TA= 25_C TA= 100_C TA= 25_C TA= 100_C
Symbol
VDS VGS ID IDM PD RthJA TJ, Tstg
ND2012L
200 "30 0.16 0.1 0.8 0.8 0.32 156
ND2020L
200 "30 0.132 0.083 0.8 0.8 0.32 156
Unit
V
A
Power Dissipation Maximum Junction-to-Ambient Operating Junction and Storage Temperature Range
W _C/W _C
-55 to 150
Notes a. Pulse width limited by maximum junction temperature. Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70197. Applications information may also be obtained via FaxBack, request document #70612.
Siliconix S-52426--Rev. C, 14-Apr-97
1
ND2012L/2020L
Specificationsa
Limits
ND2012L ND2020L
Parameter Static
Symbol
Test Conditions
Typb Min
Max
Min
Max
Unit
VGS = -8 V, ID = 10 mA Drain-Source Drain Source Breakdown Voltage Gate-Source Cutoff Voltage Gate-Body Leakage V(BR)DSV VGS(off) IGSS VGS = -5 V, ID = 10 mA VDS = 5 V, ID = 10 mA VDS = 0 V, VGS = "20 V TJ = 125_C VDS = 160 V, VGS = -8 V Drain Cutoff Current ID(off) TJ = 125_C VDS = 160 V, VGS = -5 V TJ = 125_C Drain-Saturation Currentc IDSS VDS = 10 V, VGS = 0 V VGS = 2 V, ID = 20 mA Drain-Source On-Resistancec rDS(on) VGS = 0 V, ID = 20 mA TJ = 125_C Forward Transconductance c Common Source Output Conductancec gfs gos VDS = 7 5 V ID = 20 mA 7.5 V,
220 220
200 200 -1.5 -4 "10 "50 1 200 1 200 mA -0.5 -2.5 "10 "50 nA V
300 7 8 12.6 55 75
30
30
mA
12 30
20 50
W
mS mS
Dynamic
Input Capacitance Output Capacitance Reverse Transfer Capacitance Ciss Coss Crss VDS = 25 V, VGS = -5 V, f = 1 MHz 35 10 2 100 20 5 100 20 5 pF
Switchingd
Turn-On Time td(on) tr td(off) tf Notes a. TA = 25_C unless otherwise noted. b. For DESIGN AID ONLY, not subject to production testing. c. Pulse test: PW v300 ms duty cycle v2%. d. Switching time is essentially independent of operating temperature. VDD = 25 V RL = 1250 W V, ID ^ 20 mA, VGEN = -5 V RG = 25 W 20 20 10 10 VDDQ20 ns
Turn-Off Time
2
Siliconix S-52426--Rev. C, 14-Apr-97
ND2012L/2020L
Typical Characteristics (25_C Unless Otherwise Noted)
100
Output Characteristics (ND2012)
0V -0.5 V -1 V 100
Output Characteristics (ND2020)
VGS = 2 V 80 I D - Drain Current (mA) 0.2 V 0V -0.2 V -0.4 V
80 I D - Drain Current (A)
VGS = 5 V
60
-1.5 V
60 -0.6 V 40 -1.4 V
40
-0.8 V -1 V -1.2 V
20
-2 V -2.5 V
20
0 0 0.4 0.8 1.2 1.6 2 VDS - Drain-to-Source Voltage (V) 500
0 0 0.4 0.8 1.2 1.6 2 VDS - Drain-to-Source Voltage (V)
Transfer Characteristics (ND2012)
VDS = 10 V TC = -55_C 25_C 125_C I D - Drain Current (mA) 200
Transfer Characteristics (ND2020)
VDS = 10 V 160
400 I D - Drain Current (mA)
300
120
200
80 TC = 125_C 25_C -55_C
100
40
0 -4.5
-3.5
-2.5
-1.5
-0.5
0.5
0 -4.5
-3.5
-2.5
-1.5
-0.5
0.5
VGS - Gate-Source Voltage (V)
VGS - Gate-Source Voltage (V)
25
On-Resistance and Drain Current vs. Gate-Source Cutoff Voltage
rDS @ ID = 20 mA, VGS = 0 V IDSS @ VDS = 7.5 V, VGS = 0 V
1000
25
On-Resistance vs. DrainCurrent
VGS = 0 V
rDS(on) - On-Resistance ( W )
rDS(on) 15 IDSS 10 400 600
rDS(on) - On-Resistance ( W )
20
800
20
I DSS - Drain Current (mA)
15
ND2020
10
ND2012
5
200
5
0 0 -1 -2 -3 -4 -5 VGS(off) - Gate-Source Cutoff Voltage (V)
0
0 10 100 ID - Drain Current (mA) 1K
Siliconix S-52426--Rev. C, 14-Apr-97
3
ND2012L/2020L
Typical Characteristics (25_C Unless Otherwise Noted) (Cont'd)
Normalized On-Resistance vs. Junction Temperature
2.25 g fs - Forward Transconductance (mS) rDS(on) - Drain-Source On-Resistance (Normalized) 2.00 1.75 1.50 1.25 1.00 0.75 0.50 -50 -10 30 70 110 150 TJ - Junction Temperature (_C) VGS = 0 V ID = 20 mA
Forward Transconductance and Output Conductance vs. Drain Current
350 300 250 200 150 100 50 0 1 10 100 ID - Drain Current (A) gfs gos VDS = 7.5 V Pulse Test 80 ms, 1% Duty Cycle 700 600 500 400 300 200 100 0 1K g os - Output Conductance (m S)
Capacitance
120 100 C - Capacitance (pF) 80 60 40 20 0 0 C rss 1 10 20 30 40 50 1 C oss C iss VGS = -5 V f = 1 MHz t - Switching Time (ns) 100
Load Condition Effects on Switching
td(on) VDD = 25 V VGS = 0 to -5 V RG = 25 W
tf 10 td(off) tr
10 ID - Drain Current (A)
100
VDS - Drain-to-Source Voltage (V)
1
Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-226AA)
Duty Cycle = 0.5
Normalized Effective Transient Thermal Impedance
0.2 0.1 0.1 0.05 0.02
t1 t2 1. Duty Cycle, D = t1 t2 Notes: PDM
0.01 Single Pulse
2. Per Unit Base = RthJA = 156_C/W 3. TJM - TA = PDMZthJA(t)
0.01 0.1 1 10 100 1K 10 K t1 - Square Wave Pulse Duration (sec)
4
Siliconix S-52426--Rev. C, 14-Apr-97


▲Up To Search▲   

 
Price & Availability of ND2012L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X